A moving contact line as a rheometer for nanometric interfacial layers
نویسندگان
چکیده
How a liquid drop sits or moves depends on the physical and mechanical properties of the underlying substrate. This can be seen in the hysteresis of the contact angle made by a drop on a solid, which is known to originate from surface heterogeneities, and in the slowing of droplet motion on deformable solids. Here, we show how a moving contact line can be used to characterize a molecularly thin polymer layer on a solid. We find that the hysteresis depends on the polymerization index and can be optimized to be vanishingly small (<0.07°). The mechanical properties are quantitatively deduced from the microscopic contact angle, which is proportional to the speed of the contact line and the Rouse relaxation time divided by the layer thickness, in agreement with theory. Our work opens the prospect of measuring the properties of functionalized interfaces in microfluidic and biomedical applications that are otherwise inaccessible.
منابع مشابه
Development of an atomic-force-microscope-based hanging-fiber rheometer for interfacial microrheology.
A new interfacial microrheology technique using atomic force microscope (AFM) as a force sensor is developed. The probe used for microrheology contains a long vertical glass fiber with one end glued onto a rectangular shaped cantilever beam and the other end immersed through a water-air interface. The motion of the modified cantilever can be accurately described by the Langevin equation for a d...
متن کاملThe Influence of Long-Range Surface Forces on the Contact Angle of Nanometric Droplets and Bubbles.
For a droplet or a bubble of dimensions below 100 nm, long-range surface forces such as long-range van der Waals forces can compete with capillarity, which leads to a size dependence of the contact angle. This is discussed in this work, where we also show that the effect cannot simply be described by a normalized line tension. We calculate interfacial profiles for typical values of van der Waal...
متن کاملAnnual Transactions of the Nordic Rheology
The small-deformation behaviour of Newtonian emulsion drops covered with a viscoelastic layer of adsorbed proteins (globular proteins and random coil protein) is investigated in shear flow and compared to emulsions prepared with a low molecular weight surfactant (SDS). Drop deformation experiments are performed with dilute emulsions in the rheometer using light microscopy as well as rheo-SALS [...
متن کاملWhy do aqueous surfactant solutions spread over hydrophobic substrates?
Spreading of aqueous surfactant solution droplets over hydrophobic substrates proceeds in one slow stage at concentration of surfactants below some critical value and in two stages if the surfactant concentration is above the critical value: the fast and relatively short first stage is followed by a slower second stage. It is shown that the kinetics of a slow spreading at concentrations below t...
متن کاملGeneralized Navier Boundary Condition for the Moving Contact Line∗
From molecular dynamics simulations on immiscible flows, we find the relative slipping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated Young stress. The latter arises from the deviation of the fluid-fluid interface from its static co...
متن کامل